
17/07/11 9:07How BrowserID Works

Page 1 of 15http://lloyd.io/how-browserid-works

How BrowserID Works

(a special thanks to Mike Hanson and Ben Adida for their careful review of this post)

BrowserID is a decentralized identity system that makes it possible for users to prove ownership of email
addresses in a secure manner, without requiring per-site passwords. BrowserID is hoped to ultimately become an
alternative to the tradition of ad-hoc application-level authentication based on site-specific user-names and
passwords. BrowserID is built by Mozilla, and implements a variant of the verified email protocol (originally
proposed by Mike Hanson, and refined by Dan Mills and others).

Before learning the technical details of BrowserID, it's recommended you experience a
user's perspective of BrowserID with the myfavoritebeer.org demo, and then work through
the integration tutorial for a website developer's perspective.

This post aims to provide a readable technical overview of the system. First it will summarize the key design
elements of BrowserID. Next, it will explore the various actors in the system and their inter-relationships. Finally,
we'll walk through several of the most important flows, including certificate provisioning (where the user obtains
authentication material from an identity provider), assertion generation (where the user uses that material to tell a
website who they are), and assertion verification (where the website being logged into verifies the user's email
address).

BrowserID Features

Perhaps the best way to begin understanding BrowserID is to walk through its key design features:

An email is an identity - There are no usernames in BrowserID, it uses emails addresses instead. Users
identify with emails quite naturally, and no new infrastructure is needed to reliably verify ownership of
them.

Decentralized - A user's authentication to a website occurs in relative isolation. No network transactions
with third parties are needed, so it is efficient and privacy-protecting. Additionally, any email address may
be used, and any email provider may provide first class BrowserID support for their users.

Ownership-Based Authentication - In BrowserID, the browser manages authentication material which
can be used without a password - making authentication with BrowserID more reliant on ownership factors,
and less on knowledge factors.

Usable today, and better tomorrow - An HTML5 implementation provides a functional system today, and
BrowserID is designed with adoption by browser vendors in mind. Native support in browsers will afford
improvements in both user experience and security.

Mechanism

BrowserID uses asymmetric cryptography and digital signatures to allow browsers to create signed assertions
about the user's identity, and by identity providers to vouch (via signing of a key-email pair) for a user's identity in
a disconnected fashion. BrowserID uses cross document messaging to communicate between documents served
from different domains, which makes a usable implementation of BrowserID possible right now without
modifications to existing browsers.

Actors

As said above, BrowserID is decentralized, which results in several actors interacting under a healthy mutual
distrust. These actors include:

Primary Identity Authorities (or often just primary) - Services that directly provide the user with an identity
in the form of an email address. Example primaries include Yahoo! mail or gmail. A primary can build
"BrowserID support" and directly vouch for its users' identities.

2 weeks ago

http://open-mike.org/
http://benlog.com/
https://browserid.org/
http://www.mozilla.org/about/mission.html
http://www.open-mike.org/entry/verified-email-protocol
http://www.open-mike.org/entry/verified-email-protocol
http://sandmill.org/
http://myfavoritebeer.org/
https://browserid.org/developers.html
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Cross-document_messaging
http://mail.yahoo.com/
http://gmail.com/

17/07/11 9:07How BrowserID Works

Page 2 of 15http://lloyd.io/how-browserid-works

Relying Parties (or RPs) - Sites that use BrowserID for authentication (relying on the claims of identity
authorities). The demonstration site myfavoritebeer.org, is an example RP.

The Implementation Provider (or IP) - This may be the user's web browser if native support for BrowserID
exists, otherwise browserid.org fills this role by serving web resources that implement the client portion of
the system. In addition to key management and implementations of the required algorithms, the IP also
serves as a Secondary Identity Authority. The secondary authority - that is, browserid.org, or in the case of
native support, a set of servers selected and vetted by the browser vendor - will verify and vouch for email
addresses issued by providers who have not yet implemented BrowserID support.

Important Flows

A solid understanding of how BrowserID works can be attained by working through the main flows of the system,
in terms of the interactions between the actors defined above. This section will walk through the three most
important flows:

Certificate Provisioning

Certificate Provisioning is the process by which a primary (like gmail.com) verifies that a user owns one of her
email addresses (like lloydhilaiel@gmail.com) and provides them with a signed certificate that vouches for their
ownership of that email.

Visually, the flow looks like this:

The actors involved in this flow include the user, her browser (which happens to have BrowserID support built in),
and her email provider gmail (who in this case happens to be a BrowserID primary identity authority).

1. Some event occurs whereby the user indicates that they'd like to log into an RP using their gmail address,
and the user is directed to a web-page on gmail.com designed for the purposes of key provisioning.

2. The user authenticates to gmail using their user-name and password. (or, perhaps, a stronger
authentication scheme - the strength of this login is entirely up to the authority)

3. gmail-hosted javascript invokes navigator.id.genKeyPair(), a client side function implemented by the
browser, that causes a key-pair to be generated. Upon the completion, the public key is returned to the
callee (gmail's javascript), and the key-pair is cached by the browser for the duration of the session.

4. gmail's javascript code on the client sends the public key up to a gmail server over SSL.

5. gmail signs the user's email address, the public key, and a validity interval generating a JWT (which is just
a means of encoding a signed JSON object).

6. gmail returns this bundle to the client as a response to the request in step 3.

7. JavaScript code served from gmail invokes navigator.id.registerVerifiedEmail() on the client passing in the
certificate.

8. The browser locates the private key generated in step #2 and moves it and the certificate from temporary
session storage into the user's BrowserID key-ring. The user now has a valid certificate from gmail stored
in their browser which they can use to generate assertions proving their identity.

Users will encounter certificate provisioning anytime they wish to use an email to log into a site that they haven't
used recently on their current browser.

http://myfavoritebeer.org/
https://browserid.org/
https://browserid.org/
http://self-issued.info/docs/draft-jones-json-web-token.html

17/07/11 9:07How BrowserID Works

Page 3 of 15http://lloyd.io/how-browserid-works

The flow above assumes that the primary (gmail) has built custom BrowserID support. In practice, BrowserID must
handle the case where an email provider hasn't (yet) built such support. In this case browserid.org manually
verifies email addresses and acts as a secondary authority (itself issuing certificates for email addresses which it
does not control).

Finally, in the flow above the browser has native support for BrowserID, exposing functions to generate key-pairs
and store certificates. In the absence of such support, BrowserID provides a small JavaScript shim that
implements the missing functionality using standard HTML5 techniques and cryptographic routines implemented in
JavaScript.

Assertion Generation

Assertion Generation is the process by which a user's browser produces an assertion that proves that a user owns
a given email address.

1. During the process of logging into a website, the user clicks on a "sign in" button on the RP's site, causing
the RP to invoke navigator.id.getVerifiedEmail().

2. The user selects an email address that they would like to use to log in from a list rendered by the browser.

3. The browser combines the domain requesting the identity (the audience), a validity period, and the
certificate associated with the identity in to a bundle (the certificate includes a public key, and the email
address being shared).

4. That bundle is signed using the private key associated with the identity, encoded into a JWT, and returned
to the web page.

The result of assertion generation is a JSON structure which looks like this:

{
 "assertion": {
 "audience": "myfavoritebeer.org",
 "valid-until": 1308859352261,
 }, // signed using lloyd's key for lloydhilaiel@gmail.com
 "certificate": {
 "email": "lloydhilaiel@gmail.com",
 "public-key": "<lloyds-public-key>",
 "valid-until": 1308860561861,
 } // certificate is signed by gmail.com
}

At the completion of this flow, the browser has provided the RP with an email address that they can verify is owned
by the user. See the next section for how the verification process works.

While the flow above describes the case where native browser support exists for BrowserID, the flow is identical
(except for the user interface) when the browser does not have native support: In this case all of the required
functionality can be supplied by a JavaScript shim.

Assertion Verification

Assertion Verification is the process by which a Relying Party can verify that an assertion of a user's ownership of
a certain email is valid. Verification looks like this:

lloyd.io

http://self-issued.info/docs/draft-jones-json-web-token.html

17/07/11 9:07How BrowserID Works

Page 4 of 15http://lloyd.io/how-browserid-works

1. The RP (securely) transmits the assertion from the client up to her servers.

2. Validity periods are checked on both the certificate and the assertion.

3. The RP extracts the host-name of the email within the assertion; this is the primary identity authority for the
email address. In our example above, it's gmail.com.

4. Public key(s) for gmail.com are attained from a well-known location on their servers (specifics TBD).

5. The certificate signature is verified; success proves to the RP that the embedded user's public key is valid.

6. The assertion signature is verified using the embedded user's public key, after which point the RP knows
the assertion is valid and the user owns the specified email address.

At the conclusion of the assertion verification flow, the RP has a verified email address for the user.

The above flow assumes that the primary identity authority supports BrowserID; specifically, that the authority
provisions certificates and publishes their public keys on their site. In the case that the email that is the subject of
the assertion is not from a domain where BrowserID support is present, then the assertion certificate will include an
issued-by property that is the domain of secondary authority: the entity that has vouched for the validity of the
email address. The common case today is that this will be browserid.org, but in the future there may be a small
number of secondary authorities run by browser vendors or trusted organizations. RPs are explicitly asked to trust
these authorities for email verification, so their processes and operational security would need to be transparent
and of the highest quality.

In a future where BrowserID is widely adopted, secondary authorities are the exception rather than the rule.
Identity issuers would be directly responsible for the security of their own users.

Implementation Status

At the time of writing browserid.org is a partial implementation of the system described here. The key differences
between what is described and what exists are:

certification - BrowserID today requires that authorities host all public keys associated with all users. It will
move to certificates in the coming weeks.

primary support - BrowserID doesn't currently support primary identity authorities as described above, as
there aren't any. In the coming months it will defer to 3rd parties properly and gain support for primary
authorities.

Differences from the Verified Email Protocol

lloyd.io

https://browserid.org/
https://github.com/mozilla/browserid/issues?milestone=6&state=open
https://github.com/mozilla/browserid/issues?milestone=3&state=open

17/07/11 9:07How BrowserID Works

Page 5 of 15http://lloyd.io/how-browserid-works

Sort by oldest first

This post exists to provide a clear description of how BrowserID works, and also to precisely express the ways
that it is different from various different implementations of the same theme. BrowserID is a simplification of the
protocol originally proposed by Mike Hanson, having two key differences:

Secondaries de-emphasized.

The original proposal emphasized the distribution of secondary identity authorities more than BrowserID does.
There are significant UX and administrative challenges in supporting distributed secondary authorities, and with
BrowserID the thinking is that it is better to focus on encouraging email providers to include BrowserID support
than it is to create a new ecosystem of secondaries, which may ultimately be detrimental to the safety and usability
of the system.

No webfinger based assertion verification

The original proposal included two different ways for an identity authority to vouch for a user's identity. The first
method was as in BrowserID, via a cryptographic signature. The second method was for the authority to publish
the user's current keys via webfinger and in this way vouch for them.

The latter approach is omitted from BrowserID because it is perceived as both reducing the privacy of the system
(RPs would ultimately leak more information back to identity providers about the user's activities), and because it
increases total system complexity.

Showing 48 comments

In the case of "Assertion Verification" it is clear how one can detect where to check: the IP or the primary.

For the "Assertion Generation" this is not. How does the generation know if the primary is browserID

enabled?

Ar

Like Reply1 day ago

I'd argue that it's only partially decentralised since secondary providers are centralised. I am a bit

concerned that browserid.org is a Mozilla landgrab at a time when they are rapidly losing marketshare,

and I'm not convinced that other browser manufacturers will, or should, trust Mozilla as the central

authority.

haloman

Like Reply1 day ago

@Ar for assertion verification, in the case that the IP (a secondary identity authority) has generated the

assertion there will be an 'issued-by' property in the assertion -- From the post: "In the case that the email

that is the subject of the assertion is not from a domain where BrowserID support is present, then the

assertion certificate will include an issued-by property".

During generation, there will be a way that the implementation (the browser) can check if the primary has

support and can fallback to a secondary. Now how that will work precisely isn't completely nailed down.

Perhaps something in well-known. Here's the github milestone where we'll figure that out:

Lloyd Hilaiel

http://www.open-mike.org/entry/verified-email-protocol
http://code.google.com/p/webfinger/
http://disqus.com/guest/84dd957b97a9f073f93fee2175a99a11/
http://browserid.org/
http://disqus.com/haloman/
http://disqus.com/lloydhilaiel/
http://trickyco.de/

17/07/11 9:07How BrowserID Works

Page 6 of 15http://lloyd.io/how-browserid-works

https://github.com/mozilla/bro...

Like Reply1 day ago

@haloman It's still unclear to me whether 3rd party (non RP, non browser affiliated) secondaries can be

implemented in a way that's not confusing all around, but I agree that there are significant benefits.

With respect to the central service, as you know, it's a bootstrapping tool. My best first guess is that

mozilla runs it with the level of transparency that you'd expect - to *earn* folks trust. As the experiment

evolves though, I think we'll have a better understanding of how much we should re-emphasize distributed

secondaries. Some specific concerns about a plethora of secondaries is that there is then a burden

placed on RP's (who should they trust?), and also on users (an email address alone is no longer enough

information to use the system, you need to specify who the secondary will be as well).

We've got a good size mountain to climb yet!

Lloyd Hilaiel

Like Reply1 day ago

So anyone who has access to my computer can actually get in to any site where i use BrowserId?

Harshavarma

Like Reply1 day ago

I'm concerned about this as well; what happens if a user looses control of their registered email

account? (TOS violation, provider shutdown, account gets hacked?) While an interesting concept,

I'll need to be more thoroughly convinced before I use or recommend BrowserID.

Scott Elcomb

Like Reply1 day ago in reply to Harshavarma

Hmm, I don't know. When I tried to register through myfreebeer.org I was unsuccessful. It seems the

javascript tries to open new windows which are not permitted by my browser (FF v5) config. All it does is

open a new blank window, download some stuff and close the window again. Interacting is impossible.

It works a bit better with Chromium. After logging out if you try to log in again it only offers my registered

email addresses. It doesn't log out of browserid.org. There needs to be an easy way to do that.

nottledim

Like Reply1 day ago

Looks like a nice improvement over OpenID, but they way I understand it, the primary I choose to use can

completely impersonate me against the relying party. Did I miss anything that would prevent that?

Michael Roitzsch

Like Reply1 day ago 2 Likes

https://github.com/mozilla/browserid/issues?milestone=3&state=open
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://disqus.com/guest/fb078298e492d9fc879b6bcfa155d405/
http://disqus.com/twitter-26052727/
http://twitter.com/psema4
http://myfreebeer.org/
http://browserid.org/
http://disqus.com/guest/bd5a8c791d7dee7095f69a973c9e6f93/
http://disqus.com/twitter-52001217/
http://twitter.com/reactorcontrol

17/07/11 9:07How BrowserID Works

Page 7 of 15http://lloyd.io/how-browserid-works

It's a shame that I could not login with BrowserID to post this comment :-)

Pascal Sartoretti

Like Reply1 day ago

Michael: Interesting. By my reading the primary could verify a fake public key for you, and a malicious

party could use the corresponding fake private key. If this is the case, couldn’t a malicious party (or law

enforcement, or oppressive government) gain access to an account by forcing Gmail to provide them with

a fake public/private key combination?

Nate Silva

Like Reply1 day ago 1 Like

I like the idea of using an email address as an identity - it makes personalized identities a bit easier.

However, the examples are misleading because they use "gmail" but as far as I can tell, gmail doesn't

really support BrowserID.

If I understand correctly, "BrowserID.org" is the only primary at the moment.

Cryptosmith

Like Reply1 day ago

I agree. It would have been clearer perhaps if I used a fictional name instead of gmail.com.

Lloyd Hilaiel

Like Reply1 hour ago in reply to Cryptosmith

@Cryptosmith: As far as I understand the verified email protocoll, BrowserID.org serves as secondary

identity authority. Therefore you find an "issuer" element in the reply from the verifier.

Benjamin Krämer

Like Reply1 day ago

Weird. I just did the myfavoritebeer demo and created a BrowserID.Org login. I'm not sure where Firefox

stashed the private key. It isn't under "Your Certificates," where PGP would have left it. Perhaps it's

considered a "Security Device," but there's nothing that appears related to Browser ID.

Cryptosmith

Like Reply1 day ago

the key is saved in the local storage for the domain https://browserid.org. when you open the site

Benjamin Krämer

http://disqus.com/google-9e07c6e757622d4c2f16d55aca1d242d/
http://disqus.com/twitter-8688132/
http://twitter.com/natevancouver
http://BrowserID.org/
http://disqus.com/openid-93517/
http://smat.us/r/
http://gmail.com/
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://BrowserID.org/
http://disqus.com/facebook-100001102687358/
http://www.facebook.com/people/Benjamin-Kr%C3%A4mer/100001102687358
http://disqus.com/openid-93517/
http://smat.us/r/
https://browserid.org/
http://disqus.com/facebook-100001102687358/
http://www.facebook.com/people/Benjamin-Kr%C3%A4mer/100001102687358

17/07/11 9:07How BrowserID Works

Page 8 of 15http://lloyd.io/how-browserid-works

https://browserid.org/manage and look in the source code you will find it. The method display_saved_ids()

parses window.localStorage.emails and get's the public key. you can also view your public key on that

site ;)

Like Reply1 day ago

OK, so my PRIVATE key resides on a separate site. Oof. That's a poor design choice. It makes the key

holder is the ultimate authority on identity and not the individual.

Cryptosmith

Like Reply1 day ago

Cryptosmith, I _think_ your private keys remain in your browser storage (with the html5 js code at

present but could be natively implemented), but they are signed by your email provider, (or in this

case browserid.org instead, for the moment)

darkskiez

Like Reply1 day ago in reply to Cryptosmith

No, the private key resides in browser-local storage - it is KEYED on the browserid.org domain

but the storage is your local hard drive. The public key is signed by browserid.org (or, eventually,

a primary authority), but the private key never leaves your machine.

You are correct that this is not the safest place to keep it - a hack at the SSL level, or an attacker

that compromises the server, could inject code to manipulate the client-side storage. A browser-

native implementation of the protocol (coming) will store it in your browser profile, where it can

only be accessed by trusted (i.e. addon or built-in-to-the-browser) methods.

Michael Hanson

Like Reply1 day ago in reply to Cryptosmith

Except the private key is worthless to the primary authority as they can generate their

own private key pair that authenticates as you :)

I think its still very valuable as a lightweight auth or two-factor additional step.

darkskiez

Like Reply23 hours ago in reply to Michael Hanson

yes, and that was also stated in the verified email protocol. i think the secondaries are supposed to offer

service as temporary authorities for the time till primary authorities exists. therefore the issuer is shown in

the verification reply. you are free to trust that issuer or disaccept the assertion. if the mail was verified by

a primary authority, the verification reply contains a signed certificate from the primary authority as shown

above. those replies are more trustworthy. but since there are no primaries yet, we have to trust in

Benjamin Krämer

https://browserid.org/manage
http://disqus.com/openid-93517/
http://smat.us/r/
http://browserid.org/
http://disqus.com/twitter-7668162/
http://twitter.com/darkskiez
http://browserid.org/
http://browserid.org/
http://disqus.com/twitter-56796203/
http://twitter.com/michaelrhanson
http://disqus.com/twitter-7668162/
http://twitter.com/darkskiez
http://disqus.com/facebook-100001102687358/
http://www.facebook.com/people/Benjamin-Kr%C3%A4mer/100001102687358

17/07/11 9:07How BrowserID Works

Page 9 of 15http://lloyd.io/how-browserid-works

secodaries to get the thing running.

right now i'm doing a test implementation. i want to support BrowserID and integrate it as alternative login

in a discussion board. i allow no registration using BrowserID, so it's only for single sign-on purpose for

now. so i can use the email of the already registered user and compare it with the mail in the assertions

reply.

i think if BrowserID is implemented in firefox and maybe some other browsers, this could be a great deal!

Like Reply1 day ago

I have implemented it now and it works great! But untill it's stable and the security concerns are more

better discussed i made it activatable by choice per user. on default it's disabled for all users. only users

that want to use it and now that it's experimental can already use it.

Benjamin Krämer

Like Reply1 day ago

Its probably worth mentioning, but the concerns about impersonations by people who control the

primaries, well, anyone who has access to your email account can 'reset' your password. Particularly

sensitive sites could also use a password, in conjunction to browserid, now you have two factor

authentication!

If you lose control of your email address, well, I would assume sites would/could allow you to link multiple

[backup] email accounts together into one identity. Many sites already do this.

darkskiez

Like Reply1 day ago

This may sound ridiculous, and while I think this is a great idea in theory, but it seems strange to take

email, an unofficial form of identification, and making it official at a time when the future of email is

belayed on all sides by Facebook, Google+, Twitter, etc... (granted, these are sites not standards, but I

think they forebode email's eventual replacement).

This feels a lot like using Social Security #s for identification, which they were never built for, albeit with

added security.

Adam Crabtree

Like Reply1 day ago

Adam - you'll note that all of those sites still log you in through an email address. The essential

idea of "username" AT "somewhere on the Internet" is the cryptographic basis of BrowserID. A

Facebook ID is really "facebookID" AT "facebook.com" and a Twitter ID is really "twitterID" AT

"twitter.com" - even if they don't participate in today's email-based message exchanges. If all of

Michael Hanson

http://disqus.com/facebook-100001102687358/
http://www.facebook.com/people/Benjamin-Kr%C3%A4mer/100001102687358
http://disqus.com/twitter-7668162/
http://twitter.com/darkskiez
http://disqus.com/twitter-19460286/
http://twitter.com/CrabDude
http://facebook.com/
http://twitter.com/
http://disqus.com/twitter-56796203/
http://twitter.com/michaelrhanson

17/07/11 9:07How BrowserID Works

Page 10 of 15http://lloyd.io/how-browserid-works

the email infrastructure we've built up over the last 40 years goes away, the core idea of site-

scoped identities will still be with us, and the ideas contained in this system will still work.

Like Reply1 day ago in reply to Adam Crabtree

Although I will say, aside from my comment, this is pretty cool. =D

Adam Crabtree

Like Reply1 day ago

Is there a way to display all GUI in other language than English? Polish for example? What about

translations?

mati_pl

Like Reply1 day ago

@mati_pl In it's experimental form, we're english only for now. We will localize it in the near future, here's

the placeholder milestone: https://github.com/mozilla/bro...

Lloyd Hilaiel

Like Reply1 day ago

Sorry, you lost me at "email as identity" -- I get more than enough spam as it is. Logging in to sites without

revealing my email address is one of the key selling points of OpenID.

HedgeMage (Susan Stewart)

Like Reply19 hours ago 1 Like

Hi HedgeMage. Here's a thread for you: http://groups.google.com/group...

I don't know if you'll be swayed, but it's worth a shot!

Lloyd Hilaiel

Like Reply1 hour ago in reply to HedgeMage (Susan Stewart)

This is all very technical and from a user perceptive i dont see how this would benefits me. Does that

means every sites who uses BrowserID as Login system would no longer require a user to login every

time once they have their "key" stored in their browser? (Like info stored in cookies).

Edchick

Like Reply19 hours ago

http://disqus.com/twitter-19460286/
http://twitter.com/CrabDude
http://disqus.com/mati_pl/
https://github.com/mozilla/browserid/issues?milestone=12&state=open
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://disqus.com/hedgemage/
http://binaryredneck.net/
http://groups.google.com/group/mozilla.dev.identity/browse_thread/thread/9e81ff7a4c353f92#
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://disqus.com/guest/63ab3284cd28d9504d10a6ede2328ccc/

17/07/11 9:07How BrowserID Works

Page 11 of 15http://lloyd.io/how-browserid-works

Does the video help make the case? https://browserid.org/users

This post is *supposed* to be techhnical, it's the technical primer! :) Please respond if you feel

like the video could be changed to make it more clear why users should care

Lloyd Hilaiel

Like Reply1 hour ago in reply to Edchick

It appears to me that all this facility does is lower the latency for email verification - it removes the smtp

link and substitutes a server lookup to the public key host and some CPU cycles to do the verification.

Richard Pitt

Like Reply16 hours ago

Its does more than email verification, because you don't need to tell sites a password for re-

authentication. That would be a pain to have to send a new email or find an old one to get back

into a site. Its better that lightweight websites can delegate your security to your email provider

than store your password.

darkskiez

Like Reply10 hours ago in reply to Richard Pitt

To quote what I just got - which would be done away with if this verification process were in place...

"You've just posted a comment on "trickyco.de - lloyd's blog." and have selected to receive email

notifications whenever new comments are posted. Please click the following link to confirm that you would

like to receive these notifications:

http://disqus.com/anonverify/?...

Thanks,

trickyco.de - lloyd's blog."

Richard Pitt

Like Reply16 hours ago

Delegation of authority to anybody other than yourself does not suffice as a secure authentication in my

books. Further more there are better Public Key Cryptography based login systems already out there that

goes with the anonymity of the web. Except Firefox doesn't implement it very well.

Please see: http://wiki.cacert.org/Technol...

Furthermore the method I linked supports using Security Tokens as a key and certificate store (at least on

Windows at the moment). Not to mention an additional down point is when (not if) the e-mail provider is

Ronald

https://browserid.org/users
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://disqus.com/guest/a20a0876a6a79a7251eca4c0e58fdfd6/
http://www.digital-rag.com/
http://disqus.com/twitter-7668162/
http://twitter.com/darkskiez
http://trickyco.de/
http://disqus.com/anonverify/?token=7aed19c3dcc2fc7adefef030ba89434c&email=richard%40pacdat.net
http://trickyco.de/
http://disqus.com/guest/a20a0876a6a79a7251eca4c0e58fdfd6/
http://www.digital-rag.com/
http://wiki.cacert.org/Technology/KnowledgeBase/ClientCerts
http://disqus.com/guest/b0d9ae0c31e7ca953c00e9852d4f71cc/

17/07/11 9:07How BrowserID Works

Page 12 of 15http://lloyd.io/how-browserid-works

down for whatever reason, the user won't be able to login to anything.

I've already listed 2 primary problems the architecture above will never be able to solve, and it's also the

same issues with OpenID. All in all, the direction of authentication systems like OpenID and BrowserID is

vulnerable on so many key structural levels that unfortunately I deem it no better than a simple username

and password system.

In fact, a username and password system coupled with a user's password manager that generates 200 bit

passwords which is encrypted using security tokens is far better (from the point of view of security and

anonymity) than this.

The challenge then should become how to make it easier for technology like ClientCerts to gain public

adoption. We as developers ought to take out the technical elements so every day users can use it and

not by adopting what is essentially a centralised authentication system; the underlying point in "Assertion

Verification" makes BrowserID a centralised system. Claiming to be decentralised is misleading and

inappropriate.

Bottom line, there is no point in giving public key to service providers like "gmail" or browserid.org. You

might as well skip that part and upload the public key directly to the website you would like to access so

that there is only 2 point of contact of your login information.

Like Reply16 hours ago

"Sign in" ! An empty popup comes up, and goes away after a few seconds, but apart from that, nothing

happens. In particular, the original page still says "Sign in", not "Hellow, someone_or_other".

"My account" ! Manage your email addresses (none listed). You can, at any time, cancel your account (If

I click that, nothing happens).

:-??? How do I *create* an account :-???

Tony Mechelynck

Like Reply15 hours ago

To get some attention for the BrowserID experiment I wrote a little WordPress plugin to login with

BrowserID to any WordPress powered site.

Marcel

Like Reply10 hours ago

Awesome! We should reference this and the drupal plugin on browserid.org:

https://github.com/mozilla/bro...

Lloyd Hilaiel

Like Reply1 hour ago in reply to Marcel

Crucing Stin

http://browserid.org/
http://disqus.com/facebook-1445661536/
http://www.facebook.com/profile.php?id=1445661536
http://wordpress.org/extend/plugins/browserid/
http://disqus.com/guest/e0f90331681371318d561f74ca7fbe5e/
http://browserid.org/
https://github.com/mozilla/browserid/issues/76
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://disqus.com/facebook-1210916365/
http://www.facebook.com/people/Crucing-Stin/1210916365

17/07/11 9:07How BrowserID Works

Page 13 of 15http://lloyd.io/how-browserid-works

You need to promote that system, do that and everything goes

Like Reply6 hours ago

@Tony Mechelynck I've been trying to find where the problem is. It's quite tricky because the window

closes quite quickly. However there seems to be 2 pieces of information which might be a clue:

1) in storage.js getEmails calls JSON.parse on window.localStorage.emails. That value is being reported

as null.

2) jquery.js line 6058 is reporting: uncaught exception: steal.js Could not load /jquery/event/event.js. Are

you sure you have the right path?

Any ideas?

nottledim

Like Reply4 hours ago

@Tony Mechelynck I've fixed this for my browser (I think): about:config search for dom.storage.enabled.

This should be set to true. In my case it was false.

nottledim

Like Reply4 hours ago

I run a site with over 2M unique active users, 500K of which pay for our service. I could never implement

this system because it uses email as the identity. A system that truly wants to solve the authentication

problem needs to support sites that need to tie an account to an email address and those that can't

require it. Because of the demographic I serve, older non-computer savvy, I would lose upwards of half

my non-paying base and a third of my paying customers. I base these guesses of customer base lose on

calls for account access where they state they "never read email and don't know how to access it" or

"That was my old email address".

I believe that there are a large number of sites like mine that are looking for a better way to authenticate

users but can't jump on board with system based on email.

Grok Grokem

Like Reply3 hours ago

There is nothing preventing a traditional login as a fallback. This is what's done in practice with

existing id systems. So more than half of your base gets simpler login and the remainder is

unchanged.

That said, if you're targeting a demographic where half of your users don't have email, it suggests

to me that maybe you should wait to adopt browserid until we have gotten through several

Lloyd Hilaiel

http://disqus.com/guest/bd5a8c791d7dee7095f69a973c9e6f93/
http://disqus.com/guest/bd5a8c791d7dee7095f69a973c9e6f93/
http://disqus.com/google-5e676f391071985f01a084604770f02a/
http://disqus.com/lloydhilaiel/
http://trickyco.de/

17/07/11 9:07How BrowserID Works

Page 14 of 15http://lloyd.io/how-browserid-works

iterations of user testing and UX refinement. We should be learning a *lot* in the coming months.

Like Reply1 hour ago in reply to Grok Grokem

Protocolwise, the ID you use (that happens to be able to receive over SMTP) doesn't have to be "your

email address" (i.e. the thing you read in gmail or pine) - it can be, like openid, some "identity-only"

service.

Except that sites will presumably assume that they can and should send messages to that ID, which

doesn't happen with openid because the IDs don't look like email addresses...

Ben Clifford

Like Reply3 hours ago

Missing revocation

OpenID has an active request to the identity provider every time you do an authentication.

BrowserID does not seem to have this, the identity is proven by a public key infrastructure.

So my concern is:

If someone steals your private keys: Even if you find out, you have no chance to revoke login ability,

because there is no certificate revocation list. On openID you simply change your password, if you think

someone found out your password.

But with BrowserID you will have to actively go to all service providers, to register a new public key, to

immediatly block access to your data.

If you compare this to certificate based email encryption: you are missing a central certificate revocation

list with BrowserID

Bai

Like Reply3 hours ago

The current thinking is that certs will be extremely short lived, like valid only for some number of

hours. This design choice replaces revocation. Tradeoffs abound!

Lloyd Hilaiel

Like Reply1 hour ago in reply to Bai

A post comparing OpenID and BrowserID would be welcome. Even after reading the comments, I still

conclude that BrowserID is like OpenID with email address instead of URL.

Vincent Bernat

Like Reply1 hour ago

Lloyd Hilaiel

http://disqus.com/google-873288c11779cd638a3035d2f65de17b/
http://disqus.com/guest/3c2da2b2001f14ed9e589e4d91b464df/
http://disqus.com/lloydhilaiel/
http://trickyco.de/
http://disqus.com/vbernat/
http://www.luffy.cx/
http://disqus.com/lloydhilaiel/
http://trickyco.de/

17/07/11 9:07How BrowserID Works

Page 15 of 15http://lloyd.io/how-browserid-works

blog comments powered by DISQUS

Ben Adida wrote this recently: http://identity.mozilla.com/po...

Like Reply1 hour ago in reply to Vincent Bernat

LoginAdd New Comment

Please wait…

http://disqus.com/
http://identity.mozilla.com/post/7669886219/how-browserid-differs-from-openid
http://lloyd.io/how-browserid-works#

