COMP 3410 – I.T. in Electronic Commerce

E-Trading

5. Alternative Architectures

Roger Clarke

Xamax Consultancy, Canberra Visiting Professor, A.N.U. and U.N.S.W.

http://www.rogerclarke.com/EC/... {ETIntro.html#L5, OhdsET5.ppt}

ANU RSCS, 9 October 2012

2000-12

3

Master-Slave Architecture **Star Topology**

Alternative Architectures Agenda

- 1. Master-Slave Architecture
- 2. Client-Server Architecture
- 3. Peer-to-Peer (P2P) Architecture
- 4. eSharing Digital Objects using P2P
- 5. eTrading Digital Objects using P2P
- 6. 'The Cloud'

2000-12

Multi-Personal Client-Server The 'PC' Era – Mid-Late 1970s Onwards

Client-Server Architecture Mid-1980s Onwards

2000-12

Copyright XAMAX

Client-Server Architecture – Internet-Mediated Mid-1990s Onwards

Copyright XAMAX 2000-12

5

7

Key Developments Since the Mid-1990s

- Workstation Capacity (now rivals Hosts)
- **Workstation Diversity** (vast, expanding) desktops, laptops, handhelds, smartcards, ... phones ==> smartphones, PDAs ==> tablets, cameras, ... carburettors, fridges, ... RFID tags, ...
- Broadband Connectivity (widespread) This enables dispersion and replication of devices capable of providing services
- Wireless Connectivity (increasingly widespread) This enables Mobility which means Devices change networks which means their IP-addresses change

Peer-to-Peer (P2P) Architecture 3.

P2P Architecture Cooperative Use of Resources at the Edge

Copyright XAMAX 2000-12

http://www.rogerclarke.com/EC/P2POview.html

2000-12

9

11

10

The ARPANet's Peer-to-Peer Topology 1969 Onwards **Multi-Organisational**

P2P – The Motivation

- Take advantage of resources that are available at the edges of the Internet
- To do so, make each participating program both a Client and a Server so each workstation acts as a host as well, e.g.
 - a music playstation can be a mixer too
 - your PC can host part of a music repository
 - your PDA can host part of a music catalogue

Copyright XAMAX

The P2P Server-Component's Multiple Functions

13

Important Characteristics of P2P

- Collaboration is inherent
- Clients can find Servers
- **Enough Devices with Enough Resources act as** Servers for discovery, and as Servers for services
- 'Single Points-of-Failure' / Bottlenecks / Chokepoints are avoided by means of networking dynamics
- 'Free-Riding' / 'Over-Grazing' of the 'Commons' is restrained through software and psych. features

P2P – Towards a Technical Definition

P2P is a network architecture in which each node is capable of performing each of the functions necessary to support the network and in practice many nodes do perform many of the functions

The Scale of the Undertaking

- The DNS grew to c. 30 million names in 18 years from its establishment in 1984 to 2002
- Napster achieved that many in 2 years
- The top 3 distributed-catalogue services combined quickly exceeded Napster at its peak
- AOL Instant Messaging is also very large
- By 2005, the total of all P2P names probably exceeded the number in the DNS by a factor of 10

15

Why P2P Is Attractive

- Much-Reduced Dependence on individual devices and sub-networks (no central servers)
- Robustness not Fragility (no single point-of-failure)
- Resilience / Quick Recovery (inbuilt redundancy)
- Resistance to Denial of Service (D)DOS Attacks (no central servers)
- Much-Improved Scalability (proportionality)
- Improved Servicing of Highly-Peaked Demand (more devices on the demand-side implies there are also more server-resources)

17

P2P Applications for Access to Digital Objects

- Software:
 - Fixes/Patches
 - Releases
- **Virus Signatures**
- Announcements, e.g. of technical info, business info, entertainment 'info', sports results, promotional messages, advertisements
- News Reports, by news organisations, and by members of the public

- **Emergency Services Data**
- **Backup and Recovery Data**
- Games Data, e.g. scenes and battle configurations
- Archived Messages, for conferencing/chat/IM, and cooperative publishing
- Learning Materials, in various formats
- **Entertainment Materials**, in various formats

Technical Concerns about P2P

- Address Volatility: old addresses may not work (hence trust based on repetitive dealings is difficult)
- **Absence of Central Control** (hence risk of anarchy)
- **Inadequate Server Participation** (over-grazing)
- **Security Challenges:**
 - Malware, embedded or infiltrated
 - Surreptitious Enlistment (at least potential)
 - Vulnerability to Masquerade
 - Vulnerability to Pollution Attacks (decoys)

18

eSharing Files using Peer-to-Peer (P2P)

MP3

- CD-quality digital sound in files sized 1 MB/minute
- Napster
- a central catalogue of a distributed database, to facilitate sharing of MP3 files
- Gnutella, KaZaA, et al.
- a distributed catalogue of a distributed database, to facilitate sharing of (MP3?) files

The Scope for eTrading in Music 5.

- Identify price resistance-points in the various customer-segments i.e. 'what the market will bear'
- Set prices accordingly (and hence sustain payment morality)
- Make backlists and new releases available via for-fee P2P channels
- Discourage and prosecute breaches where the purpose is commercial
- Take no action over breaches by consumers (esp. time-shifting, format-change, even sharing?)

The Evidence

- Since 2003, Apple iTunes charges USD 0.99/track!?
- Copyright-Owners get USD 0.70
- In 2005-06, they asked for more
- And argued with Jobs about variable track-pricing

eBusiness Era Revenue Sources

- Direct and Immediate Reciprocity
 - Low prices for volume sales
 - Higher prices for services that are value-added / differentiated / customised
- Indirect and/or Deferred Reciprocity
 - Donations, sponsorship, advertising
 - The-artist-pays / vanity press
 - 'Shareware' use now, maybe pay later
- 'The After-Market'
 - Accessories
- Upgrades
- Enhancements
- Extensions

2000-12

2000-12

22

'The Cloud' 6.

- Outsourcing
 - of IT Infrastructure
 - of IT platform, i.e. software environment
 - if Applications
- 'Server Virtualisation'
- Cloudsourcing

From Insourcing to Outsourcing

21

From Outsourcing to Cloudsourcing

CloudSourced Facilities

25

27

Copyright XAMAX

Cloud Computing is a Form of Outsourcing How is it different from earlier forms?

Flexible Contractual Arrangements ('pay per use')

Opaqueness ('let someone else worry about details')

• of the application, through commoditisation • of service levels, through SLA dependence

(assuming there's an SLA, and it's negotiable)

• of host location, through resource-virtualisation

Scalability ('there when it's needed)

• which means less user control:

Levels of Cloudsourcing

- Infrastructure as a Service (IaaS) Amazon EC2, Rackspace, ...
- Platform as a Service (PaaS) MS Azure, Sware Dev Environments, ...
- Software as a Service (SAAS) Google Gmail, Google Docs / Apps MS Office 365 Dropbox Salesforce MYOB LiveAccounts, Intuit Online

Levels of Cloudsourcing and What is and isn't Outsourced

		SaaS			PaaS	laaS
	•••••	Generic App	Customised Generic App	Own App		
	Service Delivery and Management	CP	CP	CP	Org	Org
	Application	CP	CP + Org	Org	Org	Org
	Platform	CP	CP	CP	CP	Org
	Infrastructure	CP	CP	CP	CP	CP

CC Architecture – The User Organisation Perspective

2000-12

29

31

Alternative Architectures Agenda

- 1. Master-Slave Architecture
- Client-Server Architecture
- Peer-to-Peer (P2P) Architecture
- eSharing Digital Objects using P2P
- eTrading Digital Objects using P2P
- 6. 'The Cloud'

Reliability – The First Few Years Inferences from Media Reports

- (1) Outages are not Uncommon
- Outages Arise from Multiple Causes
- Providers' Safeguards are Sometimes Ineffective
- Failure Cascades are Prevalent
- Providers have had to be Forced to be Responsive
- Providers have often been Uninformative
- Outages may Affect Important Ancillary Services
- The Direct Impacts have sometimes been Significant
- Indirect Impacts have often been Even More Significant
- (10) Few Customers are Recompensed

2000-12

30

COMP 3410 – I.T. in Electronic Commerce

E-Trading

5. Alternative Architectures

Roger Clarke

Xamax Consultancy, Canberra Visiting Professor, A.N.U. and U.N.S.W.

http://www.rogerclarke.com/EC/... {ETIntro.html#L5, OhdsET5.ppt}

ANU RSCS, 9 October 2012

