

Big Data Quality Assurance

Roger Clarke

Xamax Consultancy, Canberra

Visiting Professor in Computer Science, ANU and in Cyberspace Law & Policy, UNSW

Redefining R&D Needs for Australian Cyber Security Australian Centre for Cyber Security (ACCS) 16 November 2015

http://www.rogerclarke.com/EC/BDQA {.html, .pdf}

Vroom, Vroom The 'Hype' Factor in Big Data

- Volume •
- Velocity
- Variety

Vroom, Vroom The 'Hype' Factor in Big Data

- Volume
- Velocity
- Variety
- Value
- Veracity

Opportunities in the Security Area

- Network traffic
- Open Source Intelligence
- Social media postings public
- Social media postings organisation-internal
- Streams of data from eObjects (the datafication of things and people)

. . .

Use Categories for Big Data Analytics

- **Population Focus**
 - Hypothesis Testing
 - Population Inferencing
 - Profile Construction
- Individual Focus
 - Outlier Discovery
 - Inferencing about Individuals
 - Inconsistencies
 - Non/-conformance with a profile

Data

A symbol, sign or measure that is accessible to a person or an artefact

- Empirical Data represents a real-world phenomenon
 Synthetic Data does not
- Quantitative Data on a Ratio Scale
 is suitable for powerful statistical techniques
 Quantitative Data on Ordinal and Cardinal Scales
 is suitable for less powerful techniques
 Qualitative Data on a Nominal scale
 is subject to limited analytical processes

http://www.rogerclarke.com/SOS/ISFundas.html

Data Collection

- Data Collection is:
 - for a purpose
 - selective
- **Data Collection processes** are constrained by cost, which inevitably compromises the quality of the data
- **Data may be compressed** at or after collection, e.g. through sampling, averaging and filtering of outliers

Data needs to be Associated with (Id)Entities

Data Quality Factors Assessable at time of collection

- D1 Syntactic Validity
- D2 Appropriate (Id)entity Association
- D3 Appropriate Attribute Association
- D4 Appropriate Attribute Signification
- D5 Accuracy
- D6 Precision
- D7 Temporal Applicability

Information Quality Factors Assessable only at time of use

- I1 Theoretical Relevance
- I2 Practical Relevance
- I3 Currency
- I4 Completeness
- I5 Controls
- I6 Auditability

Data Quality Falls Over Time

Data Integrity deteriorates, as a result of:

- Storage Medium Degradation
- Loss of Context
- Changes in Context
- Changes in Business Processes
- Loss of Associated (Meta)Data, ...

Data Quality Falls Over Time

Data Integrity deteriorates, as a result of:

- Storage Medium Degradation
- Loss of Context
- Change of Context
- Changes in Business Processes
- Loss of Associated (Meta)Data, e.g.
 - Provenance of the data
 - The Scale against which it was measured
 - Valid Domain-Values when it was recorded
 - Contextual Information to enable interpretation

Measures are necessary to sustain Data Integrity

Key Decision Quality Factors

- Appropriateness of the Inferencing Technique
- Data Meaning
- Data Relevance
- Transparency
 - Process
 - Criteria

Copyright 2014-15

Transparency

 Accountability depends on clarity about the Decision Process and the Decision Criteria

- In practice, Transparency is highly variable:
 - Manual decisions Often poorly-documented
 - Algorithmic languages Process & criteria explicit (or at least extractable)
 - **Rule-based 'Expert Systems' software** Process implicit; Criteria implicit
 - 'Neural Network' software Process implicit; Criteria not discernible

Transparency & Accountability: The Quality of Published Research Data

- Of 18 microarray studies, only 2 were fully reproducible using the archived data [27]
- Of 19 papers in population genetics,
 - 30% of analyses could not be reproduced
 - 35% of datasets were incorrectly or insufficiently described [9]
- Of 100 datasets in nonmolecular biology, 56% were incomplete, and 64% were archived such that reuse was much impaired

Roche DG, Kruuk LEB, Lanfear R, Binning SA (2015) Public Data Archiving in Ecology and Evolution: How Well Are We Doing? PLoS Biol 13(11), **10 Nov 2015**

Transparency & Accountability: The State of Play with Research Publications

- "... reproducibility of much research has become questionable, if not impossible [because it is] shrouded by the opaque use of computers"
- "... new 'scopes' ... see new patterns in ... data ..."
- Empirical articles need to be supported by:
 - the data, defined in open formats
 - the data model
 - the code

Marwick B. (2015) 'How computers broke science – and what we can do to fix it' The Conversation, **9 November 2015**, at https://theconversation.com/ how-computers-broke-science-and-what-we-can-do-to-fix-it-49938

Data Scrubbing / Cleaning / Cleansing

- Problems It Tries to Address
 - Missing Data
 - Low and / or Degraded Data Quality
 - Failed and Spurious Record-Matches
 - Differing Definitions, Domains, Applicable Dates

Data Scrubbing / Cleaning / Cleansing

- Problems It Tries to Address
 - Missing Data
 - Low and / or Degraded Data Quality
 - Failed and Spurious Record-Matches
 - Differing Definitions, Domains, Applicable Dates
- How It Works
 - Internal Checks
 - Inter-Collection Checks
 - Algorithmic / Rule-Based Checks
 - Checks against Reference Data ??

Data Scrubbing / Cleaning / Cleansing

- **Problems It Tries to Address** •
 - Missing Data
 - Low and / or Degraded Data Quality
 - Failed and Spurious Record-Matches •
 - Differing Definitions, • Domains, Applicable Dates
- How It Works
 - Internal Checks
 - Inter-Collection Checks
 - Algorithmic / Rule-Based Checks
 - Checks against Reference Data ?? •
- **Its Implications** •
 - Better Quality and More Reliable Inferences
 - **Worse Quality and Less Reliable Inferences**

Big Data Applied to Security

cf.

Security Risks arising from Big Data Applications

Consultancy Pty Ltd

Copyright XAMAX

2014-15

http://www.rogerclarke.com/EC/SSACS.html#App1

Contexts of Quality Issues

- A Single Data-Collection
- A Consolidated / Multi-Source Data-Collection
- Scrubbing / Cleaning / Cleansing
- Inferencing Processes
- Decision-Making and Action

Organisational Risks – Internal

Security Considerations

- More Copies lie around
- Consolidation creates Honeypots
- Honeypots attract Attackers
- Some Attacks succeed

MAP OF HT EMPLOYEES FLIGHTS BASED ON CWT EMAILS SUBJECT LINES

2014-15

Hacking Team frequent flyers and locations they visit http://labs.rs/en/metadata/ 29 October 2015

Organisational Risks – Internal

Security Considerations

- More Copies lie around
- Consolidation creates Honeypots
- Honeypots attract Attackers
- Some Attacks succeed

Resource Misallocation

- Negative impacts on ROI or Public Policy outcomes
- Opportunity Costs

Copyright 2014-15

Scenario – Insider Detection

The Minister gives terse instructions about whistleblowers (Brutus, Judas Iscariot, Macbeth, Manning, Snowden, ...)

The agency:

- Increases intrusiveness and frequency of employee vetting
- Lowers the threshold for positive vetting
- Exercises its powers to gain access to and consolidate:
 - border movements credit history court records
 - LEA persons-of-interest lists financial tracking alerts
 - all internal communications social media postings
- Applies big data analytics to the consolidated database

25

Personal Risks Implications for Organisations

- Outlier Discovery
- Inferencing about Individuals

- "A predermined model of infraction" "Probabilistic Cause cf. Probable Cause"
- Non-Human Accuser, Unclear Accusation, Reversed Onus of Proof, Unchallengeable
- Inconvenience, Harm borne by the Individual

Personal Risks Implications for Organisations

Discrimination

'Unfair' Discrimination

Breaches of Trust

- Data Re-Purposing
- Data Consolidation
- Data Disclosure

Morale

Active Obfuscation, Falsification

Organisational Risks – External

- Public Civil Actions, e.g. in Negligence •
- **Prosecution** / Regulatory Civil Actions: •
 - Against the Organisation
 - Against Directors

Organisational Risks – External

- Public Civil Actions, e.g. in Negligence
- **Prosecution** / Regulatory Civil Actions:
 - Against the Organisation
 - Against Directors
- Public Disquiet / Complaints / Customer Retention / Brand-Value
- Media Coverage / Harm to Reputation

Risk Management for Big Data Projects

- 1. Frameworks
- 2. Data Consolidation
- 3. Effective Anonymisation
- 4. Data Scrubbing
- 5. Decision-Making

Research Opportunities

- Indicators and Contra-Indicators for particular Data Analytic Techniques
- Scenario Analyses ==>> Case Studies
- Data Scrubbing against external reference-points
- Quality Audit Techniques for Data Scrubbing and for Inferencing
- Transparency Mechanisms for rule-based, neural-net and machine-learning analytics
- Integration into QA, TRA and SRMP processes
- Cognitive Load Management incl. anomaly definition, filtering, clustering, prioritisation

Big Data Quality Assurance

Roger Clarke

Xamax Consultancy, Canberra

Visiting Professor in Computer Science, ANU and in Cyberspace Law & Policy, UNSW

Redefining R&D Needs for Australian Cyber Security Australian Centre for Cyber Security (ACCS) 16 November 2015

http://www.rogerclarke.com/EC/BDQA {.html, .pdf}

