

2018

Thanks to Chris Slane, NZ http://www.slane.co.nz/

Xamax Consultancy Pty Ltd, Canberra, RSCS ANU, UNSW Law

Roger Clarke

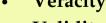
Kerry Taylor RSCS ANU, Canberra

http://www.rogerclarke.com/EC/BDBP{.html, .pdf}

Towards Responsible Data Analytics:

A Process Approach

Bled eConference - 19 June 2018


Big Data Analytics Vroom, Vroom, Vroom

- Volume
- Velocity
- Variety
- Value
- Veracity
- Validity
- Visibility

Laney 2001, Livingston 2013

Use Categories for Big Data Analytics

- **Population Focus**
 - **Hypothesis Testing**
 - **Population Inferencing**
 - Construction of Profiles
- **Individual Focus**
 - **Application of Profiles**
 - Discovery of Anomalies
 - **Outlier Discovery**
 - Discovery of Outliers

Data Quality Factors Assessable at time of collection

D1 – Syntactic Validity

D2 – Appropriate (Id)entity Association

D3 – Appropriate Attribute Association

D4 – Appropriate Attribute Signification

D5 – Accuracy

D6 - Precision

D7 – Temporal Applicability

http://www.rogerclarke.com/EC/BDBR.html#Tab1

Information Quality Factors Assessable only at time of use

I1 – Theoretical Relevance

I2 – Practical Relevance

I3 – Currency

I4 – Completeness

15 – Controls

I6 – Auditability

http://www.rogerclarke.com/EC/BDBR.html#Tab1

Data Scrubbing (Wrangling / Cleaning / Cleansing)

- **Problems It Tries to Address**
 - Missing Data
 - Low and/or Degraded Data Quality
 - Failed and Spurious Record-Matches
 - Differing Data-Item Definitions, Domains, Applicable Dates
- **How It Works**
 - **Internal Checks**
 - **Inter-Collection Checks**
 - Algorithmic / Rule-Based Checks
 - Checks against Reference Data ??
- Its Implications
 - Better Data Quality and More Reliable Inferences
 - Worse Data Quality and Less Reliable Inferences

Key Decision Quality Factors

- Appropriateness of the Inferencing Technique
- **Data Meaning**
- Data Relevance
- Transparency
 - **Process**
 - Criteria

7

"[F]aced with massive data, [the old] approach to science -- hypothesize, model, test -- is ... obsolete.

> "Petabytes allow us to say: 'Correlation is enough' '

Anderson C. (2008) 'The End of Theory: The Data Deluge Makes the Scientific Method Obsolete' Wired Magazine 16:07, 23 June 2008

2018

11

Transparency

- Accountability depends on clarity about the Decision Process and the Decision Criteria
- In practice, Transparency is highly variable:
 - Manual decisions Often poorly-documented
 - Algorithmic languages Process & criteria explicit (or at least extractable)
 - Rule-based 'Expert Systems' software Process implicit; Criteria implicit
 - 'Neural Network' software Process implicit; Criteria not discernible

"Society will need to shed some of its obsession for causality in exchange for simple correlations: not knowing why but only what.

"Knowing why might be pleasant, but it's unimportant ..."

Mayer-Schonberger V. & Cukier K. (2013) 'Big Data, A Revolution that Will Transform How We Live, Work and Think' John Murray, 2013

10

The Problem

- New techniques are escaping laboratories with limited maturity and few controls
- Over-enthusiasm by spruikers is about to collide with business risk
- There will be negative impacts on business and on people affected by decisions
- Business needs guidance on how to cope

The Project Method A Design Science Approach

- Identify conventional business processes for applying data analytics
- Apply risk assessment, risk management
- Identify shortfalls
- Propose an adapted business process
- Illustrate through a case study

Copyright 2018 XAMAX
Consultancy
Pty Ltd

13

15

Copyright 2018 XAMAX
Consultancy
Pty Ltd

A Conventional

Business Process

for Big Data

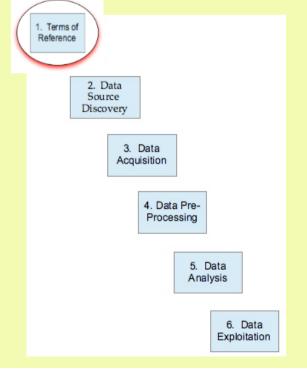
Analytics

Projects

1. Terms of Reference

2. Data Source Discovery

3. Data Acquisition


4. Data Pre-Processing

5. Data Analysis

14

A Conventional
Business Process
for Big Data
Analytics
Projects

Copyright XAMAX

Risks & Responsibilities

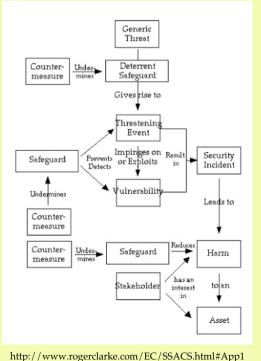
- Data Quality at time of creation
- Information Quality at time of use
- Data Scrubbing impacts
- Data Merger errors
- Analytical Technique applicability
- Inferencing Quality
- <u>Decision Rationale Transparency</u> == >> <u>Accountability</u>
- Usee Impacts
- Organisational Impacts

Copyright 2018 XAMAX
Consultancy
Pty Ltd

Risk Assessment

For Organisations

- ISO 31000/10 Risk Mngt Process Standards
- ISO 27005 etc. Information Security Risk Mngt
- NIST SP 800-30 Risk Mngt Guide for IT Systems
- ISO 8000 Data Quality Process Standard
- ISACA COBIT, ITIL, PRINCE2, ...


2018

http://www.rogerclarke.com/II/NIS2410.html#FRA

17

The Conventional Model **Underlying** Risk **Assessment**

Risk Assessment

For Organisations

- ISO 31000/10 Risk Mngt Process Standards
- ISO 27005 etc. Information Security Risk Mngt
- NIST SP 800-30 Risk Mngt Guide for IT Systems
- ISO 8000 Data Quality Process Standard
- ISACA COBIT, ITIL, PRINCE2, ...

For 'Usees'

- Technology Assessment (TA)
- Privacy Impact Assessment (PIA)

http://www.rogerclarke.com/II/NIS2410.html#FRA

18

Generic Risk Management Strategies

Proactive Strategies

- Avoidance
- Deterrence
- Prevention e.g. Redundancy

Reactive Strategies

- Detection
- Isolation / Mitigation
- Recovery
- Transference e.g. Insurance

Non-Reactive Strategies

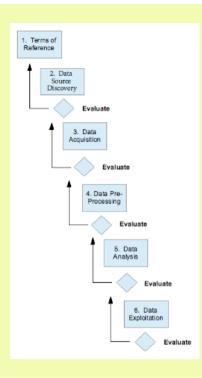
- Tolerance / Acceptance e.g. Self-Insurance
- Abandonment
- Dignified Demise / Graceful Degradation
- Abandonment / Graceless Degradation

Copyright XAMAX

19

Conventional Business Process for Data Analytics

MISSING ELEMENTS


- A preliminary, planning Phase
- Evaluation steps after each Phase
- Criteria for deciding whether the project needs to be looped back to an earlier Phase

21

23

An Adapted Business **Process**

22

'Guidelines for Responsible Application of Data Analytics'

General

DO's:

Governance, Expertise, Compliance

Data Acquisition

DO's:

The Problem Domain. The Data Sources, Data Merger, Data Scrubbing, Identity Protection, Data Security

DON'Ts:

Identifier Compatibility, Content Compatibility

3. Data Analysis

DO's:

Expertise, The Nature of the Tools, The Nature of the Data Processed by the Tools, The Suitability of the Tools and the Data

DON'Ts:

Inappropriate Data, Humanly-Understandable Rationale

4. Use of the Inferences

DO's:

The Impacts, Evaluation, Reality Testing, Safeguards, Proportionality, Contestability, Breathing Space, Post-Implementation Review

DON'Ts:

Humanly-Understandable Rationale, Precipitate Actions, Automated Decision-Making

Computer Law & Security Review 34, 3 (May-Jun 2018) https://doi.org/10.1016/j.clsr.2017.11.002 PrePrint at http://www.rogerclarke.com/EC/GDA.html

2. Data Acquisition

2.1 The Problem Domain

Understand the real-world systems about which inferences are drawn, to which data analytics are applied

2.2 The Data Sources

Understand each source of data, including:

- the data's provenance
- the purposes for which the data was created
- the meaning of each data-item at time of creation
- the data quality at the time of creation
- data quality and information quality at time of use

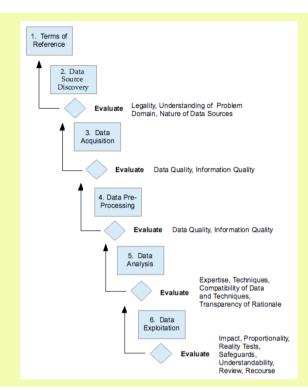
4. Uses of the Inferences

Humanly-Understandable Rationale

Don't take actions based on inferences drawn from an analytical tool in any context that may have a material negative impact on any stakeholder unless the rationale for each inference is readily available to those stakeholders in humanly-understandable terms

4.11 Automated Decision-Making

Don't delegate to a device any decision that has potentially harmful effects without ensuring that it is subject to specific human approval prior to implementation, by a person who is acting as an agent for the accountable organisation


25

27

Instantiations

- For each Use Category (as per Slide 5)
- Embeddedness in a corporate framework (e.g. standalone project, or constrained by corporate policies and practices, standards)
- Ground-breaking vs. novel project
- Degree of team-expertise and -experience

26

Demonstration via Case Study Centrelink's Online Compliance Intervention (OCI) System

- Implicit assumption that declared annual income could be divided by 26 to infer income for each fortnight of that year
- Abandonment of checks with employers, transferring those costs to the recipients
- Automation of debt-raising
- Automated referral to debt collectors
- Leap in case-load by more than 30-fold, hence most complaints were ignored

Conclusions

- Conventional business processes for data analytics lack three important features
- On the basis of established theories, plus prior research into risk assessment of data analytics projects, an adapted business process model was proposed, to make good those deficiencies
- A recent case was considered in the light of the adapted model

29

Towards Responsible Data Analytics: A Process Approach

Kerry Taylor RSCS ANU, Canberra

http://www.rogerclarke.com/EC/BDBP{.html, .pdf}

Bled eConference – 19 June 2018

Implications for Practice

- Data analytics projects need to be intercepted before they are applied
- Company directors and executives must manage direct organisational risks
- Risks to the public may be publicised and may snowball, resulting in reputational, compliance and diversion risks
- OA, RA and RM need to be applied, but also IA and IM

Implications for Research

- Instantiation is needed
- Articulation may be needed
- Case studies are needed of applications of the adapted business process
- Commercial, strategic, ethical, legal and political factors give rise to barriers to such research
- Quality and risk factors should be considered far earlier in the technology life-cycle

30